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Malaria in New Zealand –  
Using Art Science to spread a message

INTRODUCTION – JESSICA ONG

Avian malaria parasites cause morbidity and mortality in birds. Although malaria is not a threat to 
humans in New Zealand, it is an increasing threat to endangered birds. Although we perceive New 
Zealand to be malaria-free, this is not the case: avian malaria-transmitting mosquito vectors such 
as Culex and Aedes thrive in New Zealand. As of today there are at least four avian malarial species 
identified in 35 endemic New Zealand birds.1-3

In a collaboration with Penguin Rescue 
(Moeraki, New Zealand), post-doctorate 
research fellows in the Russell Lab of the 
Microbiology Department are in the process of 
understanding avian malaria species and their 
development in Megadyptes antipodes (yellow-
eyed penguin; Maori name: hōiho). Blood 
smears are regularly examined by trained 
microscopists to identify parasites in penguin 
blood (Figure 1). Even with this most reliable 
approach, slide examination is labour intensive 
and low-level parasite infections go unnoticed. 

We took the opportunity to combine art 
and science to create an exhibit for raising 
public awareness about avian malaria in the 
endangered hōiho (Figures 2 and 3). The 
debilitating “mal’aria” (Italian for “bad air”), 
was derived from the foul smelling Pontine 
marshes (which degraded after logging), and 
was a suspected source of illness over large 
areas of Rome.4 As such, the Romans drained 

Figure 1. Giemsa stain of a thin blood film from a 
yellow-eyed penguin (hōiho) Plasmodium spp (solid 
arrow) residing in a mature red blood cell (rbc). Avian 
rbc contain nuclei. Like the nucleus, the parasite’s 
cytoplasm, rich in genetic material, is also stained 
blue. The hemozoin, by product of malaria parasites, is 
stained black. Scale bar = 200 μm.
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stagnated swamps (a breeding ground for malaria-transmitting mosquitos) to combat “mal’aria”. 
Stagnant water removal continues to be part of the three-pronged approach in modern human 
malaria elimination programmes (these include intermittent preventive treatment, insecticide-
treated nets, and prompt and effective case management). Yet malaria is far from eradicated.5 
This article reviews the human and avian malaria life cycle, and discusses challenges around 
controlling avian malaria disease in endemic endangered birds.

BRIEF HISTORY OF MALARIA 

The symptoms of malaria disease include fever, anemia, weight loss, and enlargement of the 
spleen. In human hosts, fever is timed to the release of blood stage merozoites, which invade 
new red blood cells (erythrocytes), and recurs every 48 or 72 h, depending on the malaria species 
infected. Each infected erythrocyte will undergo schizogony (asexual reproduction) which matures 
18–24 more merozoites. When released, the merozoites go on to infect more erythrocytes. The 
infected blood cells flow through the body and can sequester in blood capillaries and organs such 
as the spleen and brain.6 It is during this period that patients become symptomatic. 

The earliest evidence of malaria (Plasmodium dominicana) was found in the body cavity of a Culex 
mosquito in Dominican amber.7 This avian malaria species is thought to establish in hosts of the 
order Galliformes (heavy body ground feeding birds). Common in all malaria species, the parasite 
requires a vertebrate and vector (mosquito) host for continuous transmission. Discovery of avian 
malaria (Plasmodium relictum) transmission through mosquitos was discovered by Ross in 1898, 
studying sparrows and Culex mosquitos.8

AVIAN MALARIA 

Like human malaria, avian malaria also weakens its host’s immunity. The key difference between 
human and avian malaria is the host cells which the erythrocytic merozoites invade. Avian 
merozoites invade reticulo-endothelial cells (macrophages found in specialised organs such as 
lungs, bone marrow, spleen, and lymph node).9 This poses a significant challenge to treating 
infected birds with blood-targeting drugs because these cannot reach parasites hidden in organs. 

Brief overview of avian malaria studies

Avian malaria can be transmitted by Culex, Mansonia, Culiseta and Aedeomyia spp (and in 
laboratory settings, Aedes, Anopheles and Armigeres spp).10, 11 While our investigations identify 
vectors for avian malaria transmission, utmost concern is also for the impact of climate change 
on the mosquitos that transmit malaria. Under controlled laboratory conditions, increased 
temperatures (30–35 oC) accelerate egg emergence and adult development in Culex spp.12, 13 

Interestingly, accelerated development also means that mosquitos will reach mortality quicker 
upon adulthood. However, it is unknown if Plasmodium sporogony would similarly increase in Culex 
spp at high temperatures.

In the wild, a higher proportion of malaria-infected birds is located at lower altitudes.14-18 While it 
is generally assumed that lower altitudes are warmer than higher altitudes, these studies fail to 
indicate sampling bias due to sick and weak birds not caught in mist nets. Hence, there might be no 
correlation between altitude and avian malaria, as was suggested by a study along an elevational 
gradient in Nelson Lakes National Park.18 
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Loss of native birds due to malaria disease outbreaks have been recorded worldwide, with the 
largest loss recorded in Hawaii, where more than half of Hawaiian honeycreepers have gone extinct 
due to high transmission of avian malaria and a pox virus. The loss of honeycreepers has led 
to implementation of various prevention measures to limit vector-borne diseases by minimising 
the conditions for mosquitos to lay eggs (i.e. stagnant water). The identification of such water 
sources and their mitigation actions are listed in Table 1. Although the topgraphy of New Zealand is 
different to Hawaii, some of these measures are still viable options to control vector-borne disease 
transmission.19

Table 1. Risk assessment paradigm for native bird extinction risks caused by vector-borne diseases

Step Aim Source / Action

1.	Elimination of 
standing water 
resources

Man-made Manage water source on agriculture and ranch 
lands

Formation of unified conservation in watershed 
partnerships (mid- and high-elevation)

Natural Ground holes dug by hooved/ground mammals
Strategise with fencing to manage movement

2.	Ongoing studies 
of mosquito 
population

Surveillance Limit mosquito reproduction with Wolbachia 
bacteria-mosquitos

Tree holes larvicidal treatment using Bacillus 
thuringiensis var. israelensis (BTI) for 
longtitudinal entomology surveillance

3.	Host Immunity Prevent loss of rare alleals Protect and manage bird populations

Increase genetic diversity Captive propagation and translocation

Figure 2. Table 1 - Risk assessment paradigm for native bird extinction in Hawaii.20

MALARIA PREVENTION

The current malaria prevention programme heavily emphasises mosquito vector reduction or 
control, either by removing standing water or applying larvicide to water pools.21, 22 In this sense, 
water has been the main focus to reduce malaria prevalence as it is assumed that the removal 
of water for mosquito egg laying will halt disease transmission. Although the mosquito egg laying 
surface (i.e. water) has been, from the start, the essence of eradicating malaria, mathematical 
models have also highlighted the need for preventing sporadic infections from becoming expanding 
rates of infection.23 Measurable variables such as number of infected mosquitos in a finite mosquito 
population (where mosquito abundance relates to frequency of mosquito feeding) indicate the 
likelihood of getting an infection. The conditions that influence the rate of transmission between 
readily infected hosts and vectors should also be incorporated. This includes, but is not limited to, 
biological factors such as host susceptibility, rate of recovery, disease phenotype (relapsing vs non-
relapsing), and climatic factors such as temperature, rainfall, humidity, wind speed and direction, 
and the distance between hosts-vectors.24, 25 
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With regards to endangered birds, which 
are already struggling with reproduction, the 
downward reproductive trend continues to 
limit their gene pool and their immunity levels 
to combat malaria disease. Furthermore, 
although use of insecticides and anti-
malarial drugs would suppress avian malaria 
transmission temporarily, it simultaneously 
encourages adaptation of drug-resistant 
superbugs in mosquitos and malaria parasites 
respectively. Hence, New Zealand will require 
a multiple-prong and innovative approach to 
manage vector disease transmission in order 
to conserve its vulnerable native bird species. 

HOIHO UNDER THE MICROSCOPE – EMILY BRAIN

Mosquitos are the vectors for a variety of 
diseases and parasites, and pose a threat 
to both humans and animal species. While 
malaria is not a present threat to humans 
in New Zealand, avian malaria is infecting 
native species of birds and can affect future 
population growth.
To monitor human diseases spread by 
mosquitos, Australian scientists use traps to 
collect samples of adult populations and water 
samples to look for larvae. In New Zealand 
additional information is gathered by testing 
blood samples from infected populations and 
performing manual counts of the avian malaria 
parasites in a blood smear. This takes place 
under a microscope and is time consuming and 
labour  intensive.

Not a lot is known about how we can control 
mosquito populations and the illnesses 
they carry in New Zealand but countries like 
Australia, with a high risk of human infection, 
use public awareness as a tool to help limit 
the spread. In Australia, advice on managing 
mosquito-spread illnesses is split into two 
common categories: preventing mosquito 
bites, and preventing mosquito breeding. There 
is little we can do to prevent bites in wild bird 
populations; preventing mosquito breeding is a 

Figure 3. Avian malaria exhibit display at the Royal 
Albatross Centre public gallery.

Figure 5. Emily Brain and Jessica Ong, Peering through 
the eyepiece shows a layer of parasitized red blood cells 
illuminated over a drawing of a  hōiho. 
Photograph: Pam McKinlay. 

Figure 4. Hoiho under the microscope work in progress, 
interpretation of  Giemsa stain of a thin blood film from 
a yellow-eyed penguin. Photograph: Emily Brain.
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more achievable goal. With community action in mind, the “Fight the Bite” campaign in Western 
Australia includes advice such as preventing stagnant water from gathering in containers and 
encourages families to check their home for, and cover or remove, containers which might be 
breeding places for mosquito larvae.

This approach can be utilised in New Zealand as mosquito populations grow in the rising 
temperatures of climate change. Digital and print media can be a resource for educating the 
public, and people can better understand and take action to prevent mosquito breeding within 
their household, or in industrial or farming areas.
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